
www.manaraa.com

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 4
www.aitp-edsig.org /www.isedj.org

Software Engineering Frameworks:
Textbooks vs. Student Perceptions

Kirby McMaster

kmcmaster@weber.edu
CSIS Dept, Fort Lewis College

Durango, CO 81301, USA

Steven Hadfield
steven.hadfield@usafa.edu

CS Dept, U.S. Air Force Academy
Colorado Springs, CO 80840, USA

Stuart Wolthuis

stuartlw@byuh.edu
CIS Dept, Brigham Young University-Hawaii

Laie, HI 96762, USA

Samuel Sambasivam
ssambasivam@apu.edu

CS Dept, Azusa Pacific University
Azusa, CA 91702, USA

Abstract

This research examines the frameworks used by Computer Science and Information Systems students
at the conclusion of their first semester of study of Software Engineering. A questionnaire listing 64
Software Engineering concepts was given to students upon completion of their first Software
Engineering course. This survey was given to samples of students at three universities. To identify
which topics were most important, students were asked to rate each concept on a ten-point scale.
From their responses, we calculated the average perceived importance for each concept. This paper
analyzes the results of this survey for the three student samples. We then compare the student
ratings with word frequencies exhibited by authors of Software Engineering textbooks. In this way, we
show how student frameworks relate to frameworks presented by Software Engineering authors.

Keywords: Software Engineering, framework, gestalt, schema, concept, rating.

1. INTRODUCTION

Learning is more effective if course topics and
concepts are organized within an overall mental
framework, or gestalt. By gestalt, we mean "a
configuration or pattern of elements so unified
as a whole that it cannot be described merely as

a sum of its parts" (www.thefreedictionary.com).
Each concept is introduced as a "piece" of a
puzzle. The framework allows the pieces to fit
together into a meaningful "whole". Other
similar terms used by authors include schema,
paradigm, and mental model.

www.manaraa.com

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 5
www.aitp-edsig.org /www.isedj.org

According to Donald (2002), a course needs a
schema to enable and improve understanding.

A schema ... is a data structure of generic
concepts stored in memory and containing the
network of relationships among the
constituent parts.... If we are to understand
the relationships between concepts, we need
to know in what order and how closely
concepts are linked and the character of the
linkage.

Bain (2004) describes why instructors should
provide frameworks for courses, rather than rely
on students to form their own.

The students bring paradigms to the class that
shape how they construct meaning. Even if
they know nothing about our subjects, they
still use an existing mental model of
something to build their knowledge of what we
tell them.

Frameworks are common in virtually all
Computer Science and Information Systems
(CSIS) courses. Often, primary concepts are
organized into a layered framework, where
services received at one layer are provided by
algorithms and data structures in a lower layer.
Computer Network courses favor layers
consisting of a blend of the OSI Model and the
Internet Protocol Suite (Peterson & Davie,
2011). Operating Systems courses include topics
from the hardware, kernel, system services, and
application layers (Silberschatz, Galvin, &
Gagne, 2011). Computer Hardware has layers
from simple digital logic up to VLSI circuits and
functional components (Patterson & Hennessy,
2008). Database courses insert a DBMS software
layer between application programs and
operating system files (Connolly & Begg, 2009).

Not all computing frameworks are layered. The
usual framework for Object-Oriented
Programming (Lafore, 2001) includes sets of
interrelated classes, arranged according to
established design patterns (Gamma, Helm,
Johnson, & Vlissides, 1994). Data Structures
course topics are divided into data structure and
algorithm categories, such as stacks, queues,
linked lists, searching, and sorting (Drozdek,
2008). Artificial Intelligence has utilized a
variety of frameworks over the years for search
strategies, game playing, learning models,
knowledge-based systems, and intelligent
agents (Russell & Norvig, 2009).

But which frameworks are suitable for Software
Engineering (SE) courses? Pressman (2009) and

Sommerville (2010) offer common variations
(such as "waterfall" and iterative) of the classical
life cycle approach to software development.
Schach (2010) focuses more on object-oriented
methods. Cohn (2009) encourages successful
management practices to integrate agile
development with Scrum.

In our previous research (McMaster, Rague,
Hadfield, & Anderson, 2008), we examined
frameworks for software development from the
viewpoint of textbook authors. We determined
which words are used frequently in three
samples of books: Object-Oriented
Programming, Database, and Software
Engineering. Our assumption was that words
used most often in a book indicate the gestalt of
the author. From each sample of books, we
constructed a framework (or scale) as an
ordered list of most frequent words.

In this research, we sought to determine what
mental frameworks students had developed at
the completion of their first SE course. We
examined whether their frameworks were
consistent across courses taught by different
instructors at different schools. We also
compared the student frameworks with those of
authors of commonly used SE textbooks.

The remainder of this paper is organized as
follows. First, we present our methodology for
gathering data on student ratings of SE
concepts. Next, we analyze the results to
determine which concepts students perceive as
most important. We then look at rating pattern
variations for courses taught by different
instructors. Finally, we compare student ratings
with word frequencies in SE textbooks.

2. METHODOLOGY

In this section, we describe the methodology
used in our study. A questionnaire listing 64
Software Engineering concepts (see Appendix B)
was given to CSIS students upon completion of
their first SE course. All but one of the concepts
are described by a single word or acronym (e.g.
agile, design, quality, UML). The concept use
case is presented as a word pair.

These concepts were selected from a variety of
sources. First, we chose topics that ranked high
on a Software Engineering gestalt scale that we
previously developed from frequently used
words in SE books. We supplemented this word
list with topics we felt were important, utilizing
input from other instructors that teach SE
courses. To encourage responses at the low end

www.manaraa.com

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 6
www.aitp-edsig.org /www.isedj.org

of the scale, we intentionally added several
words that are not SE-specific (e.g. activity,
language). Once the list was compiled, it was
randomized so that there would be no implied
significance to the order in which the concepts
were presented to students.

The SE concept list was included in a survey
given to samples of students at three schools.
School-1 consisted of 9 SE students at a state
university, School-2 consisted of 27 SE students
at a national university, and School-3 consisted
of 19 SE students at a private university. Almost
all students were juniors or seniors and had
completed courses in programming and data
structures. Some students had also taken a
database course. The course sections had
different instructors and textbooks, but each
sample of students received a fairly traditional
first semester SE course with an emphasis on
systems analysis and design.

To identify which SE concepts were valued most,
students were asked to rate each concept on a
10-point scale, with 1 indicating “least
important” and 10 indicating “most important”.
From the responses, we determined the average
perceived importance for each concept within
each sample. We calculated trimmed means,
removing approximately the top and bottom
11% (1/9 or 2/19 or 3/27) of the individual
ratings, so that extreme responses would not
unduly influence the concept ratings.

We found that the trimmed means for the 64
concepts differed in a biased way between the
three schools. To make the data for the samples
comparable, we standardized (rescaled) the
concept means within each school, so that the
three sets of 64 scores had the same average
(7.20) and standard deviation (1.00). This
rescaling kept the combined mean at 7.20, but
changed the standard deviations slightly. Note
that we did not rescale individual student
ratings. We rescaled the trimmed means in a
way that preserved the ordering of concepts
within each school. We could have achieved a
similar result by converting the trimmed means
to ranks, but then the concepts would have been
equally spaced (except for ties).

After gathering and transforming the survey
results, we had two types of data to analyze and
compare: (1) student ratings for the three
schools, and (2) textbook word frequencies from
our prior research. We first examine the
concept ratings for the three schools, both
separately and combined. Next, we look at the
ratings variation for each concept within schools

and between schools. Then we compare the
combined student ratings with word frequencies
in SE textbooks.

3. CONCEPT RATINGS

In this section, we analyze the concept ratings
for the three student samples. Table 1 presents
the 32 top-rated Software Engineering concepts
(out of 64), along with the rescaled trimmed
means for School-1, School-2, and School-3.

Table 1. Top 32 concept ratings for schools.

SE Concept

School-
1

N = 9

School-
2

N = 27

School-
3

N = 19

Combined

Rating
design 8.71 9.19 8.71 8.87
quality 9.15 8.72 8.00 8.62
requirement 8.13 9.21 8.47 8.60
test 8.56 8.96 8.24 8.59
implementation 8.27 8.67 8.00 8.32
user 7.98 8.88 8.00 8.29
development 8.13 7.97 8.40 8.16
software 8.56 7.72 8.00 8.10
interface 8.42 8.30 7.38 8.03
information 7.98 7.76 8.24 7.99
analysis 7.83 7.35 8.79 7.99
solution 7.98 7.76 8.08 7.94
prototype 7.98 8.18 7.38 7.84
performance 7.83 7.68 7.85 7.79
customer 6.96 9.25 7.14 7.79
project 7.83 7.31 8.08 7.74
team 7.54 7.89 7.69 7.71
application 8.42 7.26 7.38 7.69
method 8.27 7.06 7.69 7.67
model 8.42 7.55 6.99 7.65
product 7.98 8.34 6.59 7.64
management 6.96 8.34 7.61 7.64
diagram 7.69 7.43 7.77 7.63
engineering 7.40 7.01 8.47 7.63
organization 7.54 8.38 6.83 7.59
program 7.83 7.10 7.69 7.54
system 7.40 6.97 8.08 7.48
data 7.98 6.56 7.77 7.44
function 7.83 6.85 7.61 7.43
code 7.69 7.10 7.46 7.41
process 7.40 6.52 8.32 7.41
architecture 6.96 7.72 6.91 7.20

We include a column showing the average rating
of each concept for the combined sample.

The combined ratings are unweighted to prevent
the larger School-2 sample from dominating the
results. The concepts are listed in decreasing
order, based on average rating.

www.manaraa.com

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 7
www.aitp-edsig.org /www.isedj.org

A quick visual inspection of the three schools in
Table 1 reveals substantial rating similarities for
the concepts. In this table, the top five rated
concepts, all with combined ratings above 8.30,
are design, quality, requirement, test, and
implementation (four life cycle phase
descriptors, plus an umbrella goal). These five
words received a mean rating greater than 8.00
within each school. Close behind are the ratings
for user, development, and software.

The other 24 concepts in Table 1 have average
ratings at or above the mean (7.20) for all 64
concepts. The 32 concepts having average
ratings below 7.20 are presented in Appendix A.

Another way to view these results is with an
ordered list of the 10 highest-rated concepts for
each school. These three lists are presented in
Table 2.

Table 2. Top 10 concepts by school.

Rank School-1 School-2 School-3
1 quality customer analysis
2 design requirement design
3 test design requirement
4 software test engineering
5 interface user database
6 application quality development
7 model implementation process
8 implementation organization test
9 method product information
10 algorithm management solution

The concepts design and test are included in the
Top-10 lists for all three schools. Quality,
requirement, and implementation are listed for
two of the schools. The remaining 18 concepts in
Table 2 appear only once.

We can gather the top-rated words and several
of the 18 unique words from Table 2 into brief
conjectural descriptions of how the three SE
courses differ.

School-1: Quality is #1. The methodology
uses models and algorithms to build
applications.

School-2: The customer is #1. Organization
and management are necessary to create a
product that will satisfy users. (Students in
this course worked on real-world projects.)

School-3: Analysis is #1. Databases are
developed to provide information and
solutions. (This was a CIS course.)

Among the bottom 32 concepts, four received
ratings below 6.00: change (5.72), domain
(5.44), discipline (5.33), and formal (4.56).
There are several possible reasons why a
concept received a below-average rating. Some
concepts apply to later stages in the software
development life cycle, such as construction
(7.01), integration (6.59), deployment (6.57),
validation (7.08), verification (6.95), and
maintenance (7.03). These concepts presumably
would receive more emphasis in a second-
semester SE course.

Other concepts relate to a narrow range of the
life cycle or to a specific technology, so they are
less likely to receive continual emphasis during a
semester. This includes concepts such as agile
(7.01), formal (4.56), incremental (6.36),
pattern (6.04), UML (6.74), and use case (6.87).
And, as mentioned earlier, some concepts are
fairly general rather than SE-specific, such as
activity (6.38), change (5.72), discipline (5.33),
document (6.67), language (6.56), and state
(6.05).

Over the 64 concepts, the school ratings were
reasonably consistent. The correlation
coefficients between pairs of schools are
summarized in Table 3. The correlations range
from 0.480 (School-2 vs. School-3) to 0.576
(School-1 vs. School-3). These values suggest a
moderate positive relationship between the
concept ratings for the separate samples. The
fact that the correlations are not larger suggests
that some notable differences in ratings exist
between the three schools. We examine sources
of this variation in the next section.

Table 3. Ratings correlations between
schools.

Correlations School-1 School-2 School-3

School-1 1.000 0.568 0.576
School-2 0.568 1.000 0.480
School-3 0.576 0.480 1.000

4. RATINGS VARIATION

We collected concept ratings from students in SE
courses at three schools. The previous section
focused on ratings differences between SE
concepts, especially with respect to concepts
that are considered most important by students.
In this section, we describe how ratings vary for
one concept at a time.

www.manaraa.com

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 8
www.aitp-edsig.org /www.isedj.org

4.1 Within-School Variation

The variability in ratings for each SE concept can
be divided into two sources: within-schools and
between-schools. We are primarily interested in
between-school variation, which should better
reflect the concepts that instructors emphasize
in their courses. We computed within-school
variation for each concept to provide a reference
point for evaluating course differences.

For each of the 64 SE concepts, we calculated
the (untrimmed) standard deviation for student
ratings within each course. Rather than present
individual values of these statistics, we
summarize the pattern of variation by school in
Table 4.

Table 4. Between-student ratings variation
for concepts at each school.

Statistic School-1 School-2 School-3
Min Std Dev 0.88 1.63 0.93
Max Std Dev 3.22 2.91 3.04
Avg Std Dev 1.86 2.25 1.92

The 192 standard deviations ranged from a low
of 0.88 (School-1) to a high of 3.22 (again
School-1). The average standard deviation value
was slightly below 2.0 at School-1 and School-3,
but was over 2.0 at School-2. So a "typical"
measure of student-to-student variability for a
concept is about 2.0. This is a relatively large
amount of variation, considering that a "well-
behaved" distribution has about 95% of the
scores within two standard deviations (+/- 4.0)
from the mean. On a 10-point ratings scale, this
would be an interval of width 8. Many ratings
distributions tended to be skewed, so the 95%
rule is less relevant in these cases.

We also calculated the range of the ratings
scores for each concept within each school.
School-1 had an average range of 5.31, while
the average range for School-3 was 6.39. The
average range for School-2 was somewhat
larger (8.05), which is consistent with the larger
standard deviation for this school.

4.2 Between-School Variation

We now summarize the variation in ratings
between schools in terms of patterns for concept
means. For (untrimmed) means of random
samples of size N, the variance of the means will
vary inversely with the sample size N. So for a
sample of size N = 9 (School-1), the standard
deviation of the sample means would be
approximately 2.0/3 = 0.67, assuming that the

individual scores have a standard deviation of
2.0. For larger sample sizes, the means would
vary less.

Two features of our methodology limit the strict
validity of the above probability model for this
study: (1) our samples were not random, and
(2) we calculated trimmed means for each
concept. The large within-school variation
described earlier was part of the motivation for
using trimmed means. Still, the above discussion
provides a context for the way we interpreted
differences in means between schools.

Table 5 lists the SE concepts for which the
between-school ratings showed the largest
differences.

Table 5. Concept ratings mean differences.
(highest H or lowest L for concept)

SE Concept
School-1

N = 9
School-2
N = 27

School-3
N = 19

Range=
Hi - Lo

database 6.37 5.98 8.47H 2.50
algorithm 8.27H 6.85 5.89 2.38
CASE 5.64 5.73 8.00H 2.36
customer 6.96 9.25H 7.14 2.30
cost 6.08 8.05 7.22 1.97
formal 3.89 5.85H 3.93 1.96
UML 6.37 6.01 7.85H 1.84
document 5.50L 7.22 7.30 1.80
process 7.40 6.52 8.32 1.80
product 7.98 8.34 6.59L 1.75

For each concept, we calculated the standard
deviation and the range of the three school
means. The ranges are shown in the table, with
concepts listed in decreasing range order. We
only include concepts with a range above 1.70,
which is much larger than the random variation
model for means described above. Four of the
concepts--database, algorithm, CASE, and
customer--have ranges larger than 2.0. This
suggests that the SE instructors in our study
vary noticeably in how they present these topics.

When a large range is obtained from three
values, several patterns are possible:

1. One value can be much higher than the
other two.
2. One value can be much lower than the
other two.
3. The values can be evenly spread, with
the middle value spaced about equally
between the high and low values.

Looking horizontally at the mean ratings for
each concept, we have marked a rating with an

www.manaraa.com

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 9
www.aitp-edsig.org /www.isedj.org

H if it is much higher than the others, and with
an L if it is much lower. For example, the
database rating for School-3 is 8.47H, and the
document rating for School-1 is 5.50L. Note that
the low formal rating of 5.85 for School-2 is
marked with an H, as the other two schools have
even lower ratings for this concept.

We can also look vertically at the concept ratings
in Table 5 to view the distinct ratings patterns
for each school. Concepts may not have been
rated as important, but they were rated much
higher or lower by one of the schools. From this
perspective, School-1 is high for algorithm and
low for document. School-2 is high for customer
and high (less low) for formal. School-3 is high
for database, CASE, and UML and low for
product.

4.3 Ratings Profiles

In Table 5, we listed SE concepts having the
largest differences in mean ratings between
schools. Now we provide a visual representation
of the top-24 (of 32) concepts from Table 1,
where concepts are ordered by decreasing
average rating. Figure 1 provides a graph of the
concept ratings for each school, with a separate
"line" for each school.

Figure 1: Top 24 concepts--profiles of 3
schools.

This figure presents the ratings pattern for each
school as a profile. The successive differences
between concept means for schools gives the
illusion of random variation in most cases. Two
exceptions are the concepts customer and
product, where the ratings vary most widely.

These concepts are included among the Table 5
concepts with large mean ratings differences.

5. STUDENTS VS. TEXTBOOKS

We now compare average concept ratings by
students with two measures of word usage in
Software Engineering textbooks. We exclude use
case from this analysis, because this concept
involves two words. Our textbook word counts
are for single words only. For the remaining 63
concepts, we recorded how often and how
consistently these words appear in a
(nonrandom) sample of 36 SE books. Table 6
shows the concept ratings, word frequencies,
and book counts for the top 32 student-rated
concepts. Textbook results for the bottom 32
concepts are included in Appendix A.

Table 6. Top 32 concept ratings--students
vs. textbooks.

SE Concept Concept
Rating

Textbook
StdFreq

Books

design 8.87 158.3 35
quality 8.62 108.7 17
requirement 8.60 183.2 29
test (testing) 8.59 221.0 24
implementation 8.32 90.0 13
user 8.29 131.6 26
development 8.16 208.0 36
software 8.10 377.8 36
interface 8.03 103.5 18
information 7.99 109.4 27
analysis 7.99 92.4 26
solution 7.94 112.5 6
prototype 7.84 106.2 2
performance 7.79 61.5 7
customer 7.79 126.6 17
project 7.74 229.8 30
team 7.71 154.2 17
application 7.69 108.1 26
method 7.67 120.1 27
model 7.65 201.3 33
product 7.64 165.9 26
management 7.64 99.0 25
diagram 7.63 123.1 15
engineering 7.63 136.8 19
organization 7.59 108.3 16
program 7.54 145.6 26
system 7.48 358.1 35
data 7.44 154.9 32
function 7.43 93.1 21
code 7.41 118.8 27
process 7.41 259.1 36
architecture 7.20 117.3 13

6.0

6.5

7.0

7.5

8.0

8.5

9.0

9.5

des
ign

quali
ty

req
uire

men
t

test

im
plem

en
tat

ion
use

r

dev
elopmen

t

so
ftw

are

inter
fac

e

inform
atio

n

an
aly

sis

so
lutio

n

pro
totyp

e

perf
orm

an
ce

cu
sto

mer

pro
jec

t
team

ap
plic

ati
on

meth
od
mode

l

pro
duct

man
ag

em
en

t

diag
ram

en
ginee

rin
g

Software Engineering Concepts

C
on

ce
pt

 R
at

in
g

School1 School2 School3 Combined

www.manaraa.com

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 10
www.aitp-edsig.org /www.isedj.org

To measure consistency of word use, the Books
column gives the number of books (out of 36)
that include the word in its concordance. The
concordance is a list of the 100 most frequently
used words in a book (excluding common
English words). In Table 6, the words software,
development, and process are listed in all 36
concordances; design and system are in 35
concordances.

To measure how often a word appears in a book,
we rescaled each word frequency so that the
average word frequency within a concordance
was 100. This compensates for books having
different total word counts. The standardized
frequency (StdFreq) for a word is the average
rescaled frequency across all books that include
the word in its concordance. Based on this
measure, the three most frequent words are
software (StdFreq = 377.8), system (StdFreq =
358.1), and process (StdFreq = 259.1).

In Table 6, the word model has a StdFreq value
of 201.3 for the 33 books that include this word
in their concordances. The interpretation of this
measure is that model occurs about twice as
often as an average concordance word in SE
books that include model in their concordances.

The below-average rated concepts from our
questionnaire are not shown in Table 6. Three of
these words--discipline, incremental, and
validation--are not in the concordance of any of
our sample books. This does not imply that
these words do not appear in the books. It just
means that they do not occur frequently enough
to be listed in the concordances.

Figure 2: Concept rating vs. textbook word

frequency.

Of current interest, the word agile (not in Table
6) appears in the concordances of just two SE
books. In contrast, the standardized frequency
of agile is 194.4, suggesting that these two
books utilize this word heavily.

The scatter diagram in Figure 2 displays the
relationship between the combined concept
ratings for the students vs. the standardized
frequencies of these words in the SE textbooks.
Note the "diamonds" along the horizontal axis,
representing the three books that were not listed
in any concordance (and therefore received
StdFreq values of 0.0)

In this graph, the words software and system
appear as "outliers", in that the frequencies are
noticeably higher for these words. One possible
reason for the prevalence of these words is that
they apply throughout the development cycle
and are mentioned in multiple chapters in SE
books. On the other hand, the highly rated word
quality applies to every life cycle stage, but SE
authors use this word less often.

The caution here is that word frequency does
not necessarily imply importance. If we accept
that the phrase "repetition brings conviction"
applies to SE courses, perhaps we should
emphasize important concepts such as schedule
(StdFreq = 91.4, cost (StdFreq = 86.3),
maintenance (StdFreq = 84.7), document
(StdFreq = 81.8), and performance (StdFreq =
61.5) throughout the course, regardless of how
sparingly these words appear in textbooks.

The correlation coefficient between combined
concept ratings and textbook word frequencies is
0.373 (0.381 with the two high outliers
removed), indicating a modest positive linear
relationship. Not surprisingly, this is lower than
the correlation coefficients for concept ratings
between pairs of schools (which range from
0.480 to 0.576).

Thus, the students in this study agree more with
each other on the relative importance of topics
than they do with textbook authors, even
though the students had different instructors
and different textbooks. We are content that the
correlation between concept ratings and
textbook word frequencies is not negative. In
the Internet era, many students do not bother to
purchase or read course textbooks.

Figure 3 displays the relationship between
combined concept ratings and the number of SE
books containing concept words in their
concordances. In this figure, no "outliers" are

0

50

100

150

200

250

300

350

400

4.0 5.0 6.0 7.0 8.0 9.0

Concept Rating

W
or

d
Fr

eq
ue

nc
y

www.manaraa.com

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 11
www.aitp-edsig.org /www.isedj.org

obvious, probably because the number of books
is bounded by 36.

The correlation coefficient between student
concept ratings and number of textbooks is
0.415, which is slightly higher than the
correlation between ratings and word
frequencies. The diagram does illustrate how
much "scatter" can be present in a relationship
having a correlation of approximately 0.400.

Figure 3: Concept ratings vs. SE books.

To summarize, we found a modest positive
relationship between student ratings of concepts
and the two measures of word occurrence in
textbooks. Most of the concepts with above-
average student ratings appeared in the
concordances of the majority of the SE books
and had a standardized frequency above 100.
From the textbook point of view, all three SE
words that failed to appear in any concordances
had below-average student ratings.

6. SUMMARY AND CONCLUSIONS

Constructing a framework for knowledge is
essential for students in a Software Engineering
course. A successful mental framework can help
students organize course topics into a
meaningful whole, which promotes learning.

In a previous study, we developed an authors'
SE framework based on word frequencies in
popular SE books. In this current research, we
surveyed students at three schools on the
relative importance of topics in an introductory
SE course. We chose 64 concepts that students
might use in constructing their own mental
frameworks for SE. After standardizing the data
from students at each school, we obtained
relatively consistent concept ratings.

The five highest rated words were design,
quality, requirement, test, and implementation,
based on averages across the three schools.
Concepts that apply to early states or multiple
stages of the software development life cycle
tended to have higher ratings. Concepts that
arise late in the life cycle or involve a specific
technology had lower ratings.

Within schools, variability of student ratings for
concepts was quite large, with an average
standard deviation of about 2.0 (for a 10-point
scale). There was less ratings variation between
schools, partly due to our calculating trimmed
means for each concept. The largest between-
school variation occurred for four concepts--
database, algorithm, CASE, and customer.

Overall, the ratings profiles for the top-24
concepts were reasonably consistent for the
schools, with two exceptions (customer and
product). As faculty, we often agree on what is
most important, but we have difficulty agreeing
on what is less important. As a result, each
instructor emphasizes certain extra things that
make her/his course distinctive.

When student ratings for concepts were
compared to frequent (concordance) words in a
sample of 36 SE textbooks, only a moderate
positive relationship was found. Highly rated
concepts appeared more often in the sample
books, but three lower-rated words were not in
the concordances of any of the books.

Current Software Engineering instructors can
benefit from comparing results on student
ratings as summarized in this paper with their
own perception of most important concepts.
Where there are differences, consider how you
highlight your favored SE concepts. In
particular, how do emphasize important
concepts that do not appear frequently in SE
textbooks?

On a related note, are you certain that the
frameworks of your students are consistent with
the primary objectives of your SE course? Not all
student learning comes from listening to
lectures, reading textbooks, and doing
homework assignments. You are encouraged to
use the questionnaire in Appendix B to obtain
feedback from your students.

6.1 Future Research

Future research will include a replication of this
study with larger samples to verify our
preliminary findings. With additional data, we
can check how specific textbooks used in

0

5

10

15

20

25

30

35

40

4.0 5.0 6.0 7.0 8.0 9.0

Concept Rating

N
um

be
r o

f S
E

B
oo

ks

www.manaraa.com

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 12
www.aitp-edsig.org /www.isedj.org

Software Engineering courses affect ratings of
concepts. SE instructors could be surveyed in a
similar manner to discover which concepts they
feel are most important. We would then be able
to assess how closely instructor ratings match
those of their students.

We would also like to extend this research to
examine how student frameworks evolve after
taking additional SE courses, especially the SE II
course. We would study how students
perceptions change as they gain more
experience with the later stages of the software
development life cycle.

The focus of this research has been on words
that form frameworks for Software Engineering.
Beyond a collection of words, a framework
should provide a meaningful context that
explains how the words fit together. A special
challenge for future research is to examine
various ways that SE words can be integrated
into a unified Software Engineering framework.

7. REFERENCES

Bain, K. (2004). What the Best College Teachers
Do. Harvard University Press, pp 26-27.

Cohn, Mike (2009). Succeeding with Agile:
Software Development Using Scrum.
Addison Wesley.

Connolly, T., and Begg, C. (2009). Database
Systems: A Practical Approach to Design,
Implementation and Management (5th ed).
Addison Wesley.

Donald, J. (2002). Learning to Think. Jossey-
Bass, p 15.

Drozdek, A. (2008). Data Structures and
Algorithms in Java (3rd ed). Cengage
Learning.

Gamma, E., Helm, R., Johnson, R., and
Vlissides, J. (1994). Design Patterns:
Elements of Reusable Object-Oriented
Software. Addison Wesley.

Lafore, R. (2001). Object-Oriented Programming
in C++ (4th ed). Sams.

McMaster, K., Rague, B., Hadfield, S., and
Anderson, N. (2008), Three Software
Development Gestalts. In The Proceedings
of the Information Systems Education
Conference 2008, v 25 (Phoenix).

Patterson, D., and Hennessy, J. (2008).
Computer Organization and Design (4th ed).
Morgan Kaufmann.

Peterson, L., and Davie, B. (2011). Computer
Networks: A Systems Approach (5th ed).
Morgan Kaufmann.

Pressman, R. (2009). Software Engineering: A
Practitioner's Approach (7th ed). McGraw-
Hill.

Russell, S., and Norvig, P. (2009). Artificial
Intelligence: A Modern Approach (3rd ed).
Prentice Hall.

Schach, S. (2010). Object-Oriented and Classical
Software Engineering (8th ed). McGraw-Hill.

Silberschatz , A, Galvin, P., and Gagne, G.
(2011). Operating System Concepts (8th
ed). Wiley.

Sommerville, I. (2010). Software Engineering
(9th ed). Addison Wesley.

www.manaraa.com

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 13
www.aitp-edsig.org /www.isedj.org

APPENDIX A

Bottom 32 Concept Ratings--Students vs. Textbooks.

SE Concept
School-1

N = 9
School-2
N = 27

School-3
N = 19

Combined
Rating

Textbook
StdFreq

Books

problem 6.52 7.72 7.22 7.15 108.8 31
cost 6.08 8.05 7.22 7.12 86.3 19
validation 6.37 7.97 6.91 7.08 -- 0
maintenance 6.96 7.14 6.99 7.03 84.7 4
construction 7.69 6.60 6.75 7.01 45.2 1
agile 7.98 6.60 6.44 7.01 194.4 2
algorithm 8.27 6.85 5.89 7.00 68.4 3
class 7.40 6.14 7.46 7.00 186.7 21
schedule 6.37 8.01 6.52 6.97 91.4 5
specification 6.52 6.97 7.38 6.96 107.8 21
verification 6.37 7.35 7.14 6.95 51.0 2
database 6.37 5.98 8.47 6.94 65.9 7
control 7.25 6.48 6.99 6.90 68.8 22
use (case) 6.52 6.72 7.38 6.87 -- --
UML 6.37 6.01 7.85 6.74 207.3 4
document 5.50 7.22 7.30 6.67 81.8 8
component 7.10 5.89 6.83 6.61 152.0 24
integration 6.52 6.97 6.28 6.59 75.9 5
deployment 7.25 6.72 5.73 6.57 67.3 3
language 6.52 6.10 7.06 6.56 127.9 19
module 6.23 6.56 6.67 6.49 103.2 11
tool 5.94 6.14 7.30 6.46 110.9 25
CASE 5.64 5.73 8.00 6.46 117.4 33
activity 6.96 5.52 6.67 6.38 83.5 20
incremental 5.94 7.01 6.12 6.36 -- 0
framework 6.52 6.64 5.89 6.35 63.4 6
state 5.79 6.01 6.36 6.05 97.6 17
pattern 6.81 5.81 5.50 6.04 209.5 12
change 6.23 6.06 4.87 5.72 100.2 28
domain 5.35 5.40 5.58 5.44 84.3 12
discipline 5.94 5.56 4.48 5.33 -- 0
formal 3.89 5.85 3.93 4.56 75.9 8

www.manaraa.com

Information Systems Education Journal (ISEDJ) 10 (5)
 October 2012

©2012 EDSIG (Education Special Interest Group of the AITP) Page 14
www.aitp-edsig.org /www.isedj.org

APPENDIX B

Software Engineering Topic Identification Name ____________________

For each topic/concept listed below, please rate on a scale from 1 to 10 the
importance of the topic in this Software Engineering course. On this scale, 1
represents "least important" and 10 represents "most important".

 Topic/Concept Topic/Concept
____ implementation ____ product
____ algorithm ____ construction
____ model ____ performance
____ test ____ pattern
____ activity ____ framework
____ domain ____ state
____ deployment ____ system
____ formal ____ process
____ problem ____ development
____ design ____ database
____ interface ____ class
____ data ____ application
____ maintenance ____ requirement
____ diagram ____ management
____ discipline ____ organization
____ change ____ architecture
____ customer ____ user
____ cost ____ control
____ agile ____ document
____ schedule ____ incremental
____ program ____ prototype
____ UML ____ quality
____ CASE ____ validation
____ language ____ module
____ code ____ team
____ project ____ solution
____ engineering ____ information
____ tool ____ method
____ use case ____ function
____ integration ____ component
____ verification ____ specification
____ software ____ analysis

